凍結原子的「惡魔」

19世紀的思想實驗「馬克士威的惡魔」,已經成為真實的超低溫技術,這不僅帶我們走上嶄新的科學發現之路,也帶來極佳的用途。
撰文∕雷增(Mark G. Raizen)翻譯∕甘錫安

重點提要
■將氣體冷卻到接近絕對零度的傳統方法僅適用於數種元素。
■搭配運用兩項新穎的技術,可以冷卻絕大多數元素的原子,甚至可冷卻某些分子。
■有一種看似違反熱力學第二定律的技術,可具體實行19世紀的一項思想實驗:馬克士威的惡魔。
■這項技術的用途十分廣泛,自此不必借助昂貴的加速器便可研究基礎粒子的特性,也有助於純化同位素以供醫療及研究用途。

當你在閱讀這篇文章時,空氣分子正以3000公里的時速從你身旁穿梭而過,不僅速度比子彈快,而且從四面八方襲來。在此同時,構成你身體的原子和分子也正 不停翻滾、振動或互相碰撞。自然界中沒有任何東西是完全靜止的,物體的行進速度越快,蘊含的能量就越大。原子和分子的集體能量,就是我們所感受到的熱。

至於完全靜止,也就是溫度上的絕對零度(0K),在物理上雖然不可能存在,但科學家已經越來越接近這個最終極限。在這類極端情況下,奇特的量子效應會開始 浮現,形成不尋常的新物質狀態。尤其值得注意的是,將氣態原子雲(而不是液態或固態物質)冷卻到絕對溫標的幾分之一度時,研究人員將可觀察到物質粒子的波 動特性,並依此建造出史上最精準的測量儀器,製作出最精確的原子鐘。

但是這類原子冷卻技術有個缺點,就是只適用於週期表中的某些元素,因此用途大受限制。舉例來說,最簡單的原子「氫」長年以來一直很難冷卻。不過,現在我們的研究團隊找到了新的冷卻方法,不但適用於大多數元素,也可用於許多種分子。

我的靈感來源是馬克士威(James Clerk Maxwell)在維多利亞時代提出的思想實驗。這位偉大的蘇格蘭物理學家提出一項理論,認為可能有個不遵守熱力學定律的「惡魔」。

這項新發現將可為基礎研究開拓出一條新方向,同時帶來各種實際用途。舉例來說,這項技術的各項變化或許有助於開發新的製程,純化在醫學和基礎研究上都有重 要功用的稀有同位素。另外或許還有一項附帶效益,就是提升電腦晶片奈米製程技術的精確度。在科學方面,研究人員可藉由冷卻原子和分子,探索介於量子物理和 一般化學之間這塊目前還沒有人探究過的領域,或是發掘物質和反物質之間可能的特性差異。另外,超冷氫原子及其同位素還有助於小型實驗室解答某些原本必須借 助粒子加速器等大型實驗儀器才能解決的基礎物理問題。

飛快的子彈
凍結並操縱原子和分子並不是件簡單的事。在典型的實驗中,研究人員先加熱固態的特定化學元素,製造出純化的氣體,或以雷射直接汽化;接著將氣體減速,局限在真空室中,並與真空室內壁保持距離。

我採用的技術是「古法」。40多年前,化學家發現在好幾個大氣壓力下,讓氣體通過小孔,進入真空,氣體會在膨脹時明顯冷卻。最重要的是,這類「超音速氣體 束」接近完全「單能狀態」(monoenergetic),也就是氣體分子的個別速率相當接近平均值。舉例來說,如果氣體束的時速為3000公里,那麼其 中分子的個別時速與平均時速的差距最多為30公里。相較之下,室溫下的空氣分子平均時速同樣為3000公里,但個別分子的時速卻可能從0~4000公里都 有。

從熱力學的觀點看來,這表示氣體束雖然擁有相當大的能量,溫度卻非常低。我們可以將它想成這樣:假如觀察者與氣體束同樣以時速3000公里前進,便會覺得氣體分子移動得非常慢,而氣體束的溫度則會低到只有0.01K(也就是絕對溫標的0.01度)!

我發現,如果我們能將此類氣體束的速度減到極低,同時盡量縮小個別速度的分佈範圍,就可得到極低溫的原子團,便於捕獲並進一步冷卻。

為了達到這個目標,我們的團隊於2004年開始與以色列特拉維夫大學化學家伊文(Uzi Even)合作,研究超音速氣體束。我們的第一次嘗試是製作一枚邊緣有葉片的轉子,以超音速氣體束的一半速度旋轉,且葉片會慢慢後退。我們讓氣體束對準轉 子上的葉片,並且讓葉片後退的速度確切抵消氣體束的速度。氣體原子從轉子上彈開時,轉子會吸收氣體原子的所有動能,這就像網球拍邊後退邊攔截網球,便可讓 網球停下。

【欲閱讀完整的豐富內容,請參閱科學人2011年第111期5月號】
arrow
arrow
    全站熱搜

    luishsu 發表在 痞客邦 留言(0) 人氣()